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Abstract
We give an extension of the two-component KP hierarchy by considering
additional time variables. We obtain the linear 2 × 2 system by taking into
consideration the hierarchy through a reduction procedure. The Lax pair of the
Schlesinger system and the sixth Painlevé equation is given from this linear
system. A unified approach to treat the other Painlevé equations from the usual
two-component KP hierarchy is also considered.

PACS numbers: 02.30.Jr, 02.30.Ik
Mathematics Subject Classification: 34M55, 35Q55, 37K10

1. Introduction

The aim of this paper is to establish correspondence between the isospectral deformation and
the monodromy preserving deformation. We construct an extension of the two-component
Kadomtsev–Petviashvili (KP) hierarchy by introducing new time variables. We give the
relation between this hierarchy and the sixth Painlevé equation. We show also the relation
between the usual two-component KP hierarchy and the other Painlevé equations.

The relation between the isomonodromic deformation and the isospectral one was
discussed; see [2, 5, 18, 19]. Jimbo and Miwa [5] described a procedure to reduce the
isospectral deformation into the isomonodromic deformation consistently by using the τ -
function. One can obtain not only the Painlevé equations themselves but also the Lax pairs
of them. The third Painlevé equation (PIII) and the fourth Painlevé equation (PIV) were
obtained through the reduction from the Pohlmeyer–Lund–Regge equation and the nonlinear
Schrödinger equation, respectively. Takasaki’s paper [17] has been related to a Hamiltonian
structure of the first Painlevé hierarchy in terms of the Sato theory. Noumi and Yamada [14]
introduced a Painlevé system associated with the affine root system of type A

(1)
n−1 including
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PII
(
A

(1)
1

)
, PIV

(
A

(1)
2

)
and PV

(
A

(1)
3

)
. The systems are equivalent to similarity reductions of the

n-reduced modified KP hierarchy. The coefficients of the Lax pair for the system of type
A

(1)
n−1 are n × n matrices [13]. The similarity reductions of the Drinfel’d–Sokolov hierarchies

were investigated by Ikeda, Kakei and Kikuchi; see [6–8, 10]. As a consequence, PV can be
obtained from the modified Yajima–Oikawa equation, and PVI with four parameters can be
derived from the three-wave resonant system. In the paper [8], the coefficients of the Lax pair
which they obtained were also 3 × 3 matrices. They showed that the 2 × 2 linear system can
be obtained from the 3 × 3 linear system by Laplace transformation [3, 12]. Zhang’s paper
[20] has reviewed the multi-component KP hierarchy and one of its reduction.

We give systems of the isospectral deformations that are directly reduced to the Lax pairs
for the Painlevé equations. Specifically, we deal with the linear systems with 2 × 2 matrices,
in fact the types of singular points of the linear system with 2 × 2 matrices which correspond
to the types of the Painlevé equations. We intend to study the Painlevé equations by relating
the properties of the soliton equations to that of the Painlevé equations. In order to construct
the signpost of this approach, we try to formulate the holonomic deformation by using the
Sato theory.

In this paper, we consider an infinite-dimensional integrable hierarchy and give the Lax
pair with 2 × 2 matrices for PVI. This hierarchy is an extension of the two-component KP
hierarchy by using additional time variables. The extension means that the hierarchy restricted
to be independent of the introduced time variables is equal to the usual two-component KP
hierarchy. We consider especially the (1, 1)-reduction of the two-component KP hierarchy
which is known as the nonlinear Schrödinger hierarchy. It is contained in the extended
Zakharov–Shabat hierarchy; cf [1]. We formulate the extended hierarchy by using the Sato–
Wilson formalism and then define a wavefunction which is a normal solution of the linear
system.

Then we consider the holonomic deformation in the same way as the isospectral
deformation. We construct a system of linear differential equations in the spectral parameter by
using the wavefunction in the extended hierarchy. We obtain nonlinear systems that describe
the condition of the complete integrability of the linear systems. The infinite-dimensional
system is reduced to the Schlesinger system, from which PVI is obtained.

We treat also the other Painlevé equations from the viewpoint of the usual two-component
KP hierarchy. We study the nonlinear Schrödinger hierarchy by using the Sato–Wilson
formalism, and then give different wavefunctions. The choice of the wavefunction can
be done freely from the two-component KP hierarchy, the holonomic deformations might
be dependent on it. We construct systems of linear differential equations in the spectral
parameter by using each wavefunction. We then obtain nonlinear systems that describe the
condition of the complete integrability of the linear systems. If we assume several reductions
for the linear systems, then the infinite-dimensional systems are reduced to one-dimensional
systems which yield the other Painlevé equations; see section 4 below. It follows that the
reductions of the nonlinear Schrödinger equation give rise to not only PIV (see [5]) but also PV

and PIII.
In section 2, we construct an extension of the two-component KP hierarchy by employing

the Sato–Wilson formalism. In section 3, we consider the holonomic deformation based on
this extended hierarchy and obtain the nonlinear system that describes the condition of this
deformation. We see that the nonlinear system reduces to PVI. In section 4, we study the
holonomic deformation that contains the two-component KP hierarchy and show that the
nonlinear systems that describe the condition of this deformation reduce to the other Painlevé
equations, PV, PIV, PIII and PII.
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2. An extension of the two-component KP hierarchy

In the present section, we study an extension of the (1, 1)-reduction of the two-component KP
hierarchy. We give a formulation of this hierarchy by using the Sato–Wilson formalism, and
then obtain an integrable system by means of the Zakharov–Shabat system.

2.1. Pseudo-differential operator

The multi-component theory of the KP hierarchy is established in the paper, [15]. The n-
component KP hierarchy is formulated by matrix pseudo-differential operators of size n × n,
instead of scalar ones used in the one-component hierarchy. We explain some notation about
the matrix pseudo-differential operators of size n × n.

The action of the differential operator ∂x on an n × n matrix f (x) is

∂xf (x) = d

dx
f (x).

The operator ∂−1
x is defined by

∂x∂
−1
x = ∂−1

x ∂x ≡ 1.

Pseudo-differential operators are defined by using the operators ∂x and ∂−1
x .

Definition 1. A pseudo-differential operator with matrix coefficients of size n × n is a linear
operator,

A =
∑
m

am(x)∂m
x ,

where am(x) is an n × n matrix-valued function of x.

A sum of pseudo-differential operators is defined in the usual way by collecting terms, and
their product is defined by the following extension of Leibniz’s rule,

AB =
∑
m,n

am(x)∂m
x bn(x)∂n

x =
∑
m,n

∞∑
k=0

(
m

k

)
am(x)b(k)

n (x)∂m+n−k
x ,

where (
m

k

)
=

⎧⎨
⎩

m(m − 1) . . . (m − k + 1)

k!
(k � 1)

1 (k = 0).

We define the differential operator part of a pseudo-differential operator A by

(A)+ =
∑
m�0

am(x)∂m
x .

A pseudo-differential operator possesses a unique inverse, denoted by A−1.

2.2. Sato equation

In the Sato–Wilson formalism, a pseudo-differential operator called the gauge operator plays
an essential role. The coefficients of the gauge operator are dependent variables in the soliton
system. The condition of the isospectral deformation is given by the Sato equations that the
gauge operator should satisfy.

3
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We define the gauge operator of size 2 × 2 by

W = I +
∞∑

k=1

wk∂
−k
x , (1)

whose 2 × 2 coefficient matrices wk(k � 1) do not depend on the parameter x. This condition
for the coefficients is equivalent to ‘the (1, 1)-reduction’. The formal series W can be inverted.
Let

W−1 =
∞∑

k=0

vk∂
−k
x , (2)

the first few vk’s are

v0 = I,

v1 = −w1,

v2 = −w2 + w2
1,

v3 = −w3 + w1w2 + w2w1 − w3
1.

(3)

The gauge operator W can be used to define the operator

U = Wσ3W−1 = σ3 +
∞∑

k=1

uk∂
−k
x , (4)

where

σ3 =
(

1 0
0 −1

)
and

uk =
k∑

j=1

[wj, σ3]vk−j (k � 1). (5)

We introduce a differential operator

Sn = (γnI + cnσ3)

∞∑
k=0

an
−k−1∂k

x (n = 1, . . . , l). (6)

By employing the gauge operator W and the differential operator Sn, we define differential
operators Bn(n � 1) and Cn(n = 1, . . . , l) by

Bn = (
Wσ3∂

n
xW−1

)
+ =

n−1∑
k=0

un−k∂
k
x + σ3∂

n
x (n � 1), (7)

Cn = (WSnW−1)+ = Rn

∞∑
k=0

an
−k−1∂k

x (n = 1, . . . , l), (8)

where

Rn = γnI + cn

(
σ3 +

∞∑
l=1

an
−lul

)
(n = 1, . . . , l). (9)

Matrix operators

W = I +
∞∑

k=1

wkλ
−k, (10)

4
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U = σ3 +
∞∑

k=1

ukλ
−k, (11)

Sn = (γnI + cnσ3)

∞∑
k=0

an
−k−1λk = −γnI + cnσ3

λ − an

(n = 1, . . . , l), (12)

Bn =
n−1∑
k=0

un−kλ
k + σ3λ

n (n � 1), (13)

Cn = Rn

∞∑
k=0

an
−k−1λk = − Rn

λ − an

(n = 1, . . . , l), (14)

are obtained from the pseudo-differential operators by replacing ∂x with λ. We assume that
the matrix operators satisfy

∂tnW = BnW − Wσ3λ
n (n � 1), (15)

∂an
W = CnW − WSn (n = 1, . . . , l), (16)

which we call the Sato equation hereafter.
Let us now define a wavefunction.

Definition 2. A wavefunction �(λ) is defined by the following expression:

�(λ) = W�0(λ), (17)

where

�0(λ) = λα(λ − 1)β
l∏

n=1

(λ − an)
γn exp(xλ)

× diag

{
λa(λ − 1)b

l∏
n=1

(λ − an)
cn exp

( ∞∑
n=1

tnλ
n

)
,

λ−a(λ − 1)−b

l∏
n=1

(λ − an)
−cn exp

(
−

∞∑
n=1

tnλ
n

)}
. (18)

We note that the matrix-valued function �0(λ) satisfies

∂an
�0(λ) = Sn�0(λ) = Sn�0(λ) (n = 1, . . . , l). (19)

This leads to the following theorem:

Proposition 1. If a matrix operator W satisfies the Sato equation (15) and (16), then the
wavefunction �(λ) which can be derived from W satisfies the linear systems,

∂x�(λ) = λ�(λ), (20)

∂tn�(λ) = Bn�(λ) (n � 1), (21)

∂an
�(λ) = Cn�(λ) (n = 1, . . . , l). (22)

The Sato equations also lead to the following theorem:

5
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Proposition 2. If a matrix operator W satisfies the Sato equation (15) and (16), then the
matrix operators U,Bn and Cn satisfy the Lax-type systems,

∂tnU = [Bn,U ] (n � 1), (23)

∂an
U = [Cn,U ] (n = 1, . . . , l), (24)

and the Zakharov–Shabat systems,

∂tmBn − ∂tnBm + [Bn,Bm] = 0 (n,m � 1), (25)

∂am
Bn − ∂tnCm + [Bn,Cm] = 0 (n � 1,m = 1, . . . , l), (26)

∂am
Cn − ∂an

Cm + [Cn,Cm] = 0 (n,m = 1, . . . , l). (27)

The systems (25) are equal to the Zakharov–Shabat systems in the (1, 1)-reduction of
the two-component KP hierarchy. The systems (26) and (27) are the additional ones in the
extended hierarchy.

3. The extended two-component system and the sixth Painlevé equation

In this section, we consider a holonomic deformation of systems, obtained from the integrable
system given in the previous section. We construct a system of linear differential equations
in the spectral parameter λ by using the wavefunction in the extended hierarchy, and then
obtain nonlinear systems that describe the condition of the complete integrability of the linear
systems. We show that the infinite-dimensional system is reduced to the Schlesinger system,
from which PVI is obtained.

If we introduce a differential operator

V = I

(
α − β

∞∑
k=1

∂k
x −

l∑
n=1

γn

∞∑
k=1

an
−k∂k

x + x∂x

)

+ σ3

(
a − b

∞∑
k=1

∂k
x −

l∑
n=1

cn

∞∑
k=1

an
−k∂k

x +
∞∑

n=1

ntn∂
n
x

)
, (28)

then the matrix-valued function �0(λ) (18) fulfils

λ∂λ�0(λ) = V�0(λ). (29)

By using the gauge operator W and the differential operator V , we define a differential operator
D by

D = (WVW−1)+ =
∞∑

k=0

dk∂
k
x , (30)

where

d0 = αI + aσ3 − b

∞∑
l=1

ul −
l∑

n=1

cn

∞∑
l=1

an
−lul +

∞∑
n=1

ntnun,

d1 =
(

−β −
l∑

n=1

γnan
−1 + x

)
I − b

(
σ3 +

∞∑
l=1

ul

)

−
l∑

n=1

cnan
−1

(
σ3 +

∞∑
l=1

an
−lul

)
+ t1σ3 +

∞∑
n=2

ntnun−1,

6
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dk =
(

−β −
l∑

n=1

γnan
−k

)
I − b

(
σ3 +

∞∑
l=1

ul

)

−
l∑

n=1

cnan
−k

(
σ3 +

∞∑
l=1

an
−lul

)
+ ktkσ3 +

∞∑
n=k+1

ntnun−k (k � 2). (31)

We introduce matrix operators

T = αI + aσ3

λ
+

βI + bσ3

λ − 1
+

l∑
n=1

γnI + cnσ3

λ − an

+
∞∑

n=1

ntnσ3λ
n−1, (32)

A =
∞∑

k=0

dkλ
k−1. (33)

We note that

∂λ�0(λ) = T �0(λ). (34)

We assume that the matrix operator A satisfies the Sato equation with respect to the spectral
parameter:

∂λW = AW − WT. (35)

This leads to the following theorem:

Proposition 3. If a matrix operator W satisfies the reduction condition (35), then the
wavefunction �(λ) (17) satisfies the linear system

∂λ�(λ) = A�(λ). (36)

The Sato equations also lead to the following theorem:

Proposition 4. If a matrix operator W satisfies the Sato equation (15), (16) and (35), then
the matrix operators U and A satisfy the Lax-type systems,

∂λU = [A,U ], (37)

and the matrix operators A,Bn and Cn satisfy the Zakharov–Shabat-type systems,

∂tnA − ∂λBn + [A,Bn] = 0 (n � 1), (38)

∂an
A − ∂λCn + [A,Cn] = 0 (n = 1, . . . , l). (39)

If we introduce matrices

P = αI + aσ3 − b

∞∑
l=1

ul −
l∑

n=1

cn

∞∑
l=1

an
−lul +

∞∑
n=1

ntnun, (40)

Q = βI + b

(
σ3 +

∞∑
l=1

ul

)
, (41)

T0 = xI + t1σ3 +
∞∑

n=2

ntnun−1, (42)

7



J. Phys. A: Math. Theor. 41 (2008) 365205 M Murata

Tk = (k + 1)tk+1σ3 +
∞∑

n=k+2

ntnun−k−1 (k � 1), (43)

then we have

A = P

λ
+

Q

λ − 1
+

l∑
n=1

Rn

λ − an

+
∞∑

k=0

Tkλ
k, (44)

where the matrix Rn is given by (9). If we put tn ≡ 0(n � r), then we have Rk ≡ 0 (k � r−1),
and A has a pole of degree r at λ = ∞. In this case, the linear system (36) is said to have an
irregular singular point at λ = ∞ of Poincaré rank r − 1.

By using (14), (39) and (44), we obtain the systems

∂an
P +

[
P

an

, Rn

]
= 0, (45)

∂an
Q +

[
Q

an − 1
, Rn

]
= 0, (46)

∂an
Rm +

[
Rm

an − am

,Rn

]
= 0 (m �= n), (47)

∂an
Rn −

⎡
⎣ P

an

+
Q

an − 1
+

∑
m=1,...,l,m �=n

Rm

an − am

+
∞∑
l=0

an
lTl, Rn

⎤
⎦ = 0, (48)

∂an
Tk −

[ ∞∑
l=k+1

an
l−k−1Tl, Rn

]
= 0 (k � 0). (49)

If we put tn ≡ 0 (n � 1) and x ≡ 0, then the coefficient matrices reduce to Tk ≡ 0 (k � 0)

and we have

∂an
P +

[
P

an

, Rn

]
= 0, (50)

∂an
Q +

[
Q

an − 1
, Rn

]
= 0, (51)

∂an
Rm +

[
Rm

an − am

,Rn

]
= 0 (m �= n), (52)

∂an
Rn −

⎡
⎣ P

an

+
Q

an − 1
+

∑
m=1,...,l,m �=n

Rm

an − am

,Rn

⎤
⎦ = 0. (53)

This system is nothing but the Schlesinger system [16]. If we set l = 1, then we have

∂a1P +

[
P

a1
, R1

]
= 0, (54)

∂a1Q +

[
Q

a1 − 1
, R1

]
= 0. (55)

This system is equivalent to PVI in the paper, [4].

8
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4. The two-component KP hierarchy and the other Painlevé equations

In this section, we study holonomic deformation relating to the (1, 1)-reduction of the two-
component KP hierarchy. We show that systems obtained from the deformation reduce to the
Painlevé equation, PV, PIV, PIII and PII.

4.1. The fifth Painlevé equation

We explain the (1, 1)-reduction of the two-component KP hierarchy. We show that the systems
that describe the condition of the holonomic deformation that contains this hierarchy as a part
reduces to PV. Therefore we find that PV is obtained through the reduction from the nonlinear
Schrödinger equation.

We define the gauge operator

W = I +
∞∑

k=1

wk∂
−k
x , (56)

whose 2 × 2 coefficient matrices wk do not depend on the parameter x. This condition for the
coefficients is equivalent to ‘the (1, 1)-reduction’. By using the gauge operator W , we define
a pseudo-differential operator U by

U = Wσ3W−1 = σ3 +
∞∑

k=1

uk∂
−k
x . (57)

We define a differential operator Bn by

Bn = (
Wσ3∂

n
xW−1)

+ =
n−1∑
k=0

un−k∂
k
x + σ3∂

n
x (n � 1). (58)

Matrix operators

W = I +
∞∑

k=1

wkλ
−k, (59)

U = σ3 +
∞∑

k=1

ukλ
−k, (60)

Bn =
n−1∑
k=0

un−kλ
k + σ3λ

n (n � 1) (61)

are obtained from the pseudo-differential operators by replacing ∂x with λ. We assume that
the matrix operators satisfy the Sato equation

∂tnW = BnW − Wσ3λ
n (n � 1). (62)

We define a wavefunction

�(λ) = W�0(λ), (63)

where

�0(λ) = λα(λ − 1)β exp(xλ) diag

{
λa(λ − 1)b exp

( ∞∑
n=1

tnλ
n

)
,

λ−a(λ − 1)−b exp

(
−

∞∑
n=1

tnλ
n

)}
. (64)

9
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This definition of the wavefunction is slightly different from the usual one. The difference
does not affect the soliton system, but affects the system of the holonomic deformation.

This leads to the following proposition:

Proposition 5. If a matrix operator W satisfies the Sato equation (62), then the matrix
operators U and Bn satisfy

∂tnU = [Bn,U ] (n � 1), (65)

∂tmBn − ∂tnBm + [Bn,Bm] = 0 (n,m � 1). (66)

Furthermore, the wavefunction �(λ) satisfies the linear systems,

∂x�(λ) = λ�(λ), (67)

∂tn�(λ) = Bn�(λ) (n � 1). (68)

We consider the holonomic deformation that contains the two-component system. If we
introduce a differential operator

V = I

(
α − β

∞∑
k=1

∂k
x + x∂x

)
+ σ3

(
a − b

∞∑
k=1

∂k
x +

∞∑
n=1

ntn∂
n
x

)
, (69)

then the matrix-valued function �0(λ) (64) satisfies

λ∂λ�0(λ) = V�0(λ). (70)

By using the gauge operator W and the differential operator V , we define a differential operator
D by

D = (WVW−1)+ =
∞∑

k=0

dk∂
k
x , (71)

where

d0 = αI + aσ3 − b

∞∑
l=1

ul +
∞∑

n=1

ntnun,

d1 = (−β + x)I − b

(
σ3 +

∞∑
l=1

ul

)
+ t1σ3 +

∞∑
n=2

ntnun−1,

dk = −βI − b

(
σ3 +

∞∑
l=1

ul

)
+ ktkσ3 +

∞∑
n=k+1

ntnun−k (k � 2).

(72)

We introduce matrix operators

T = αI + aσ3

λ
+

βI + bσ3

λ − 1
+

∞∑
n=1

ntnσ3λ
n−1, (73)

A =
∞∑

k=0

dkλ
k−1. (74)

We note that

∂λ�0(λ) = T �0(λ). (75)

10
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We assume that the matrix operator A satisfies the condition

∂λW = AW − WT. (76)

This leads to the following proposition:

Proposition 6. If a matrix operator W satisfies the reduction condition (76), then the matrix
operators U,A and Bn satisfy

∂λU = [A,U ], (77)

∂tnA − ∂λBn + [A,Bn] = 0 (n � 1). (78)

Furthermore, the wavefunction �(λ) (63) satisfies the linear system,

∂λ�(λ) = A�(λ). (79)

If we introduce matrices

P = αI + aσ3 − b

∞∑
l=1

ul +
∞∑

n=1

ntnun, (80)

Q = βI + b

(
σ3 +

∞∑
l=1

ul

)
, (81)

T0 = xI + t1σ3 +
∞∑

n=2

ntnun−1, (82)

Tk = (k + 1)tk+1σ3 +
∞∑

n=k+2

ntnun−k−1 (k � 1), (83)

then we have

A = P

λ
+

Q

λ − 1
+

∞∑
k=0

Tkλ
k. (84)

By using (61), (78) and (84), we obtain the systems

∂t1P + [P, u1] = 0, (85)

∂t1Q + [Q,u1 + σ3] = 0, (86)

∂t1T0 − σ3 + [T0, u1] + [P + Q,σ3] = 0, (87)

∂t1Tk + [Tk, u1] + [Tk−1, σ3] = 0 (k � 1). (88)

If we put tn ≡ 0 (n � 2), then the coefficient matrices reduce to T0 = t1σ3, Tk ≡ 0 (k � 1),
and then we have

∂t1P + [P, u1] = 0, (89)

∂t1Q + [Q,u1 + σ3] = 0. (90)

This system is equivalent to PV in the paper, [4].

11



J. Phys. A: Math. Theor. 41 (2008) 365205 M Murata

4.2. The fourth Painlevé equation

We consider the different holonomic deformation that relates to the hierarchy in the previous
subsection. We show that the system that describes the deformation condition reduces to PIV.
This fact follows the result in the paper, [5].

We employ the same soliton system as in the previous subsection. But we define the
wavefunction as follows:

�(λ) = W�0(λ), (91)

where

�0(λ) = λα exp(xλ)

(
λa exp

(∑∞
n=1 tnλ

n
)

0

0 λ−a exp
(−∑∞

n=1 tnλ
n
)
)

. (92)

This leads to the following proposition:

Proposition 7. If a matrix operator W satisfies the Sato equation (62), then the wavefunction
�(λ) satisfies the linear systems,

∂x�(λ) = λ�(λ), (93)

∂tn�(λ) = Bn�(λ) (n � 1). (94)

We present the reduction condition for the soliton system. If we introduce a differential
operator

T = I (α + x∂x) + σ3

(
a +

∞∑
n=1

ntn∂
n
x

)
, (95)

then the matrix-valued function �0(λ) (92) satisfies

λ∂λ�0(λ) = T �0(λ). (96)

By using the gauge operatorW and the differential operator T , we define a differential operator
A by

A = (WT W−1)+ =
∞∑

k=0

ak∂
k
x , (97)

where

a0 = αI + aσ3 +
∞∑

n=1

ntnun,

a1 = xI + t1σ3 +
∞∑

n=2

ntnun−1,

ak = ktkσ3 +
∞∑

n=k+1

ntnun−k (k � 2).

(98)

We introduce matrix operators

T = I (α + xλ) + σ3

(
a +

∞∑
n=1

ntnλ
n

)
, (99)

12
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A =
∞∑

k=0

akλ
k. (100)

We assume that the matrix operator A satisfies

λ∂λW = AW − WT. (101)

This leads to the following proposition:

Proposition 8. If a matrix operator W satisfies the reduction condition (101), then the matrix
operators U,A and Bn satisfy

λ∂λU = [A,U ], (102)

∂tnA − λ∂λBn + [A,Bn] = 0 (n � 1). (103)

Furthermore, the wavefunction �(λ) (91) satisfies the linear system,

λ∂λ�(λ) = A�(λ). (104)

Remark 4.1. If we put tn ≡ 0 (n � l), then we have ak ≡ 0 (k � l). In this case, the linear
system (104) has a regular singular point at λ = 0 and an irregular singular point at λ = ∞
of Poincaré rank l − 1. Hence we guess that the systems (103) are equivalent to the fourth
Painlevé equation with several variables; see [9].

By using (61), (100) and (103), we have the systems

∂t1a0 + [a0, u1] = 0, (105)

∂t1a1 − σ3 + [a1, u1] + [a0, σ3] = 0, (106)

∂t1ak + [ak, u1] + [ak−1, σ3] = 0 (k � 2). (107)

If we put t2 ≡ 1/2, tn ≡ 0 (n � 3), then the coefficient matrices reduce to a2 = σ3, ak ≡
0 (k � 3), and we have

∂t1a0 + [a0, u1] = 0, (108)

∂t1a1 − σ3 + [a1, u1] + [a0, σ3] = 0. (109)

This system is equivalent to PIV in the paper, [4].

4.3. The third Painlevé equation

We present that the system that is the condition of the different holonomic deformation reduces
to PIII. So we find that PIII is obtained through the reduction from the nonlinear Schrödinger
equation.

We employ the same soliton system as in the previous subsection, and we give another
reduction condition for the soliton system. If we introduce a differential operator

T = I
(
α∂x + x∂2

x

)
+ σ3

(
a∂x +

∞∑
n=1

ntn∂
n+1
x

)
, (110)

then the matrix-valued function �0(λ) (92) satisfies

λ2∂λ�0(λ) = T �0(λ). (111)

13
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By using the gauge operatorW and the differential operator T , we define a differential operator
A by

A = (WT W−1)+ =
∞∑

k=0

ak∂
k
x , (112)

where

a0 = −w1 + au1 +
∞∑

n=1

ntnun+1,

a1 = αI + aσ3 +
∞∑

n=1

ntnun,

a2 = xI + t1σ3 +
∞∑

n=2

ntnun−1,

ak = (k − 1)tk−1σ3 +
∞∑

n=k

ntnun−k+1 (k � 3).

(113)

We introduce matrix operators

T = I (αλ + xλ2) + σ3

(
aλ +

∞∑
n=1

ntnλ
n+1

)
, (114)

A =
∞∑

k=0

akλ
k. (115)

We assume that the matrix operator A satisfies

λ2∂λW = AW − WT. (116)

This leads to the following proposition:

Proposition 9. If a matrix operator W satisfies the reduction condition (116), then the matrix
operators U,A and Bn satisfy

λ2∂λU = [A,U ], (117)

∂tnA − λ2∂λBn + [A,Bn] = 0 (n � 1). (118)

Furthermore, the wavefunction �(λ)(91) satisfies the linear system,

λ2∂λ�(λ) = A�(λ). (119)

By using (61), (115) and (118), we obtain the systems

∂t1a0 + [a0, u1] = 0, (120)

∂t1a1 + [a1, u1] + [a0, σ3] = 0, (121)

∂t1a2 − σ3 + [a2, u1] + [a1, σ3] = 0, (122)

∂t1ak + [ak, u1] + [ak−1, σ3] = 0 (k � 3). (123)

If we put tn ≡ 0 (n � 2), then the coefficient matrices reduce to a2 = t1σ3, ak ≡ 0 (k � 3),
and then we have

∂t1a0 + [a0, u1] = 0, (124)

∂t1a1 + [a1, u1] + [a0, σ3] = 0. (125)

We can obtain PIII from this system (4.3).
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4.4. The second Painlevé equation

We present that the system that describes the condition of the different holonomic deformation
reduces to PII.

We employ the same soliton system as in subsection 4.1. However we define the
wavefunction as follows:

�(λ) = W�0(λ), (126)

where

�0(λ) = λαexλ

(
exp

(∑∞
n=1 tnλ

n
)

0

0 exp
(−∑∞

n=1 tnλ
n
)
)

. (127)

This leads to the following proposition:

Proposition 10. If a matrix operator W satisfies the Sato equation (62), then the wavefunction
�(λ) satisfies the linear systems,

∂x�(λ) = λ�(λ), (128)

∂tn�(λ) = Bn�(λ) (n � 1). (129)

We give the reduction condition for the soliton system. If we introduce a differential
operator

T = I
(
α∂−1

x + x
)

+ σ3

∞∑
n=1

ntn∂
n−1
x , (130)

then the matrix-valued function �0(λ) (127) satisfies

∂λ�0(λ) = T �0(λ). (131)

By using the gauge operatorW and the differential operator T , we define a differential operator
A by

A = (
WT W−1)

+ =
∞∑

k=0

ak∂
k
x , (132)

where

a0 = xI + t1σ3 +
∞∑

n=2

ntnun−1,

ak = (k + 1)tk+1σ3 +
∞∑

n=k+2

ntnun−k−1 (k � 1).

(133)

We introduce matrix operators

T = I (αλ−1 + x) + σ3

∞∑
n=1

ntnλ
n−1, (134)

A =
∞∑

k=0

akλ
k. (135)
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We assume that the matrix operator A satisfies

∂λW = AW − WT. (136)

This leads to the following proposition:

Proposition 11. If a matrix operator W satisfies the reduction condition (136), then the matrix
operators U,A and Bn satisfy

∂λU = [A,U ], (137)

∂tnA − ∂λBn + [A,Bn] = 0 (n � 1). (138)

Furthermore, the wavefunction �(λ) (126) satisfies the linear system,

∂λ�(λ) = A�(λ). (139)

Remark 4.2. If we put tn ≡ 0 (n � l), then we have ak ≡ 0 (k � l − 1). In this case, the
linear system (139) has an irregular singular point at λ = ∞ of Poincaré rank l − 1. So we
guess that the systems (138) are equivalent to the Ag-system; see [11].

By using (61), (135) and (138), we have the systems

∂t1a0 − σ3 + [a0, u1] = 0, (140)

∂t1ak + [ak, u1] + [ak−1, σ3] = 0 (k � 1). (141)

If we put t3 ≡ 1/3, tn ≡ 0 (n = 2, n � 4), then the coefficient matrices reduce to
a2 = σ3, ak ≡ 0 (k � 3), and we have

∂t1a0 − σ3 + [a0, u1] = 0, (142)

∂t1a1 + [a1, u1] + [a0, σ3] = 0. (143)

This system is equivalent to PII in the paper, [4].
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